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The nature of two-electron integral transformations as a major stumbling block to 
configuration interaction calculations is discussed. An N6 general procedure utilizing 
positional algorithms for all members of specially ordered lists of partial summations is 
presented. Theoretical analysis detailing sequencing and calculational algorithms is 
included, augmented by results of FORTRAN programmed versions of the method. Two 
program versions differing in the manner of dividing the partially summed integrals 
into blocks give practical orders N5.6+0.a and N6.28*0.05, the former approaching theoretical 
order. 

With the advent of large and extremely fast computers, the development of 
programs utilizing self-consistent field (SCF) methods, and the increasing 
availability of these programs, more researchers are using calculations to support 
and illuminate the observed behavior of molecules. The successes and shortcomings 
of SCF methods have been well documented1 and viable alternatives have been 
mentioned. For those who wish to proceed beyond the limitations of SCF calcula- 
tions, configuration interaction (CI) is now an economically and programmatically 
feasible route. 

Of primary importance to the CI calculation are the integral transformations 

B = C+bC (1) 
Riilel = CftCitrCkCl (2) 

from atomic to molecular bases. In Eqs. (1) and (2) C is the molecular orbital 
coefficient matrix, the r are the two-electron integrals over the atomic basis and 
b the one-electron integrals. The one-electron transformation Eq. (1) presents 

1 See for example, H. F. Schaefer III, “The Electronic Structure of Atoms and Molecules- 
A Survey of Rigorous Quantum Mechanical Results,” Addison-Wesley (1972). 
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little problem as even grossly inefficient routines can handle the work with speed. 
The same statement does not hold for Eq. (2), however. Because of the enormous 
number of terms involved in the transformation expressed in Eq. (2) even for a 
moderate number (N) of atomic basis functions, considerable attention must be 
paid to the efficiency of the algorithms employed. A number of efficient algorithms 
[l-3] have been proposed, all of which have a work dependence of N5. The recent 
proposal of Bender [l] appears to be maximally efficient, but suffers from the 
requirement of random access to the intermediate partial sums with its attendant 
demands for large fast memory storage. Tang and Edmiston [2] have proposed a 
method similar in some respects to the analysis presented here. The present work 
addresses itself to a highly detailed exposition of sequencing and of calculational 
algorithms effecting the transformation expressed in Eq. (2) without utilizing 
specific savings due to highly symmetrical situations. In addition, the algorithms 
discussed have been programmed and comparisons between the functioning 
programs and the theoretical analysis are presented. 

METHOD 

The two electron transformation (Eq. (2)) utilizes the symmetric permutations 
of integral indices 

(ab 1 cd) = (ab 

= (ba 

= <ba 

= (cd 

= <cd 

= (dc 

= (dc 

dc> 
dc) 
cd) 
ab) 
W 
W 
ab) 

(3) 

As a result of these equalities the input and transformed bases need only contain 

entries (where W is the length of the basis). Such a set may be defined by (ab 1 cd), 

1 < [abl < (W2 f W/2 

[ab] G [cdl < (W2 + W/2 (5) 
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where [ub] = pair position of the pair ab in a list of unique pairs of a and b 

in which there are ( W2 + W)/2 unique pairs. The position, Z, of any integral with 
known indices (ij 1 kl) in a canonically ordered list may then be determined by the 
equation9 

P(ij) = (i - l)[W + 1 - i/2] + j - i + 1 

P(kZ) = (k - l)[W + 1 - k/2] + 1 - k + 1 
(7) 

Z = (Z’(zj) - l)[ W( W + 1)/2 + 1 - P(ij)/2] + P(k2) - P(g) + 1 (8) 

As a result of the retention of only unique integrals in each respective list, the 
transformation, expressed as 

which may then be written as the partial summations 

<pq I rs) = C UP9 I rs> 
s 

(10) 

(11) 

(13) 

may not be carried out as the straightforward summations of Eqs. (10-13) without 

s See Appendix A for a derivation of these expressions. The more usual lower triangle indexing 
has the somewhat simpler formulae 

i(i - 1) PmPW - 11 
PW = -+j,z= + p(kO 

2 2 
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some manipulation of the input list to each partial summation. It is proposed 
that such manipulation be carried out in the formation of the sets from Eq. (10) 
and Eq. (12) in order that Eq. (11) and Eq. (13) apply exactly as written. The 
resulting list of (pq 1 r& from Eq. (10) would then be sequenced as 

1 G r \( N for everypq8, 1 < [pql d (N2 + IV)/2 for every 6, 1 d 6 G M, (14) 

where N is the length of the expansion basis and A4 that of the transformed basis, 
resulting in M(N3 + N2)/2 items created. The second partial summation, Eq. (1 I), 
then becomes a trivial exercise of N multiplications and additions to form each 
member of a list, (6~ j pq), 

1 d [pq] < (N2 + N)/2 for every ay, 1 < [Syl < (M2 + M)/2, (15) 

consisting of (N2 + N)(M2 + M)/4 entries. Minor manipulations of the indices 
of this set in concert with application of Eq. (12) yields a list (67 I /3p) 

1 < p < N for every &y/3,6 < /? < M for every 6y, 1 < [S,] < (M2 + A4)/2, (16) 

of N(2M3 + 3M2 + A4)/6 unique terms required for Eq. (13). Consequently, 
Eq. (13) may be utilized to form the completely transformed set, (67 I PLY) 

[Sy] S [@I S (M2 + M)/2 for every Sy, 1 S 16~1 < CM2 + JO/2 (17) 

The total number of operations in the transformation (an operation being defined 
as a multiplication and addition) is then 

g1 zi * N UW 

where Z, = number of terms produced in partial summation i. 

(18’4 

which in the worst possible case (N = M) leads to 

operations, yielding what should be an N5 procedure. Table I demonstrates the 
magnitude of the problem for N and M values up to 50. 
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TABLE I 

Number of Operations Required for Various N and M Values 

M/N 10 20 30 40 50 

10 139150 1255800 5344950 15601600 36420750 
20 4153100 14547150 38606200 85420250 
30 30801600 74073800 154323500 
40 128264400 251955500 
50 388641250 

CALCULATIONS 

Because of the large number of integrals created and used during the course 
of the transformation and the general inadequacy of computer fast storage to 
handle this number of items, the transformed and incoming integral sets will 
probably be divided into blocks. The result of these arbitrary divisions is a sizable 
increase in the amount of work the computer must perform (and thus the time 
involved). 

A program utilizing the basic algorithms given in Eqs. (10-17) has been written 
entirely in FORTRAN and tested using two types of fixed block dimensions. In 
the first version a list as described in Eq. (14) is created such that each block of the 
transformed list contains at least all possible p, q, and r values for a given 6. 
Since there are (N2 + J/)/2 pairs pq and N I’S for every pq, the blocksize must be 
at least (W + N3/2. Since only the unique integrals are kept in the atomic basis 
list, the creation of the list of the first partial sum requires that each of the unique 
atomic basis integrals (tu 1 VW} be treated as two permutations such that in Eq. (10) 

(a) p = t, q = u, r = v, s = w 

1 G [ml < bl 

(b) p = v, q = w, r = t, s = u 

[ml > [A 3 1. 

Case (a) treats each integral (tu I VW) as (tu 1 VW) and as (tu ( WV) (except when 
w = v) while case (b) treats the integral as (VW 1 tu) and as (VW [ ut> (except when 
u = t) with the case [pq] = [rs] being treated only in (a). For each block of the 
partially transformed list the peripheral unit (either tape or disk) containing the 
atomic basis set must be read through completely. After completion of a partially 
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transformed block, that block may be stored on a peripheral unit and the next 
block calculated. After completion of the list, application of Eq. (11) to each block 
of the new list results in the list described by Eq. (15), which is stored in blocks. 
Again, because only unique entries are retained, resultant partial sums must be 
treated as (6~ 1 pq) and (6~ 1 qp) to create the set described by Eq. (16). The 
completely transformed list is then a straightforward result of Eq. (13). 

The second version, which requires more computation, involves a fixed block 
size in the output list of the first partial summation with the only restriction 
being that the r index (see Eq. (14)) be completed at the end of a block, i.e., if 

N = length of input basis 
A = size of block, 

the effective block size will be the largest multiple of N which is still less than or 
equal to A. The first entry in a partially transformed list block (as described in 
Eq. (14)) will then have indices (pbqa 1 18,) and the last entry will have indices 
(plql 1 N6,). (Set D = [paqJ). There are then two cases which yield all necessary 
atomic basis integrals for the partial summation of Eq. (10). Again, the integral 
indices t, U, u and w must be permuted3 such that in Eq. (10) 

(I) (i) p = t, q = 24, r = u, s = w 

EmI -=c D, 1 d [pql G [ml G (N2 + W/2 = WI 

(ii) p = 0, q = w, r = t, s = 24 

(II) (i) p = t, q = 24, r = n, s = w 

D d hl d b-4 

(ii) p = 0, q = w, r = t, s = 24 

Ml > bl 3 D 

Case (I) is used for all integrals in the atomic basis list which precede the integral 
with indices <pbqb 1 pbqb). Case (II) then applies to the integral with the afore- 
mentioned indices and all that follow it in the list. In all cases with the obvious 
exception of r = s the r and s indices must be permuted i.e., the integrals (pq ) rs> 
and <pq 1 sr) are required for the partial summation. 

In the formation of the list (pq I r6) in version 1 the atomic integral list must 

3 See Appendix B. 
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be read through completely for each block of the partially summed list. There 
exist possible savings in version 2, however in that if a block is so structured that 
[paqe] < [plqJ, 6, = 6,) then no [pq] < D would occur in the current block of 
the output list of (pq 1 r8) and the operations in case (I).(i) above need not be 
performed. Further, all atomic integrals necessary for the partial summation in 
Eq. (10) would occur before and up to the integral with indices (ptqz 1 NV). 
However if there exists any pq pair within the partially summed list block such 
that [pq] > [plql] (thus implying 6, # 6,) then these savings are not possible 
and all operations above must be performed on the entire list of atomic integrals. 

While a brief flow chart of each partial summation is presented in Appendix C, 
some details of the method seem in order. 

First partial summation (FRST). The set described in Eq. (14) is formed. 
Initially the effective block size and first and last integral indices of each block 
in both the incoming and producted lists are computed. Then, in a loop over the 
number of blocks of items to be created, the atomic basis integral list is read 
through to the appropriate place; the position of the (pq 1 t-6) to which a 
(pq j rs) contributes is calculated and the contributions C(s, 8) * (pq 1 rs) and 
C(r, 6) * (pq I sr) are added to the appropriate places. It is here that version 1 
and version 2 differ. For an arbitrarily cut list of (pq / rS), more than one value 
of 6 may exist within a block i.e., the range ofp, q, and r values specified by Eq. (14) 
may have ended for one value of 6 but not for another. For this reason the position 
calculated for the partial sum must be checked to see if a given atomic basis 
integral need contribute to more than one value of 6 in a block. Where all possible 
p, q, and r values for a given 6 exist within a block, such a check is unnecessary. 

Second partiaZ summation (SCND). Equation (11) is applied to the list formed 
above to create the list described by Eq. (15). 

Third partial summation (THRD). (1) Determines the indices of the first and 
last partial sum of each block of the list from Eq. (15) and the list to be created. 
(2) Does the actual transformation treating each (6~ 1 pq) as (67 1 pq) and 
<b I 4P). 

Fourth partiaZ summation (FRTH). Equation (13) is applied to the list formed 
in the third partial summation. 

DISCUSSION 

Version 1, through the utilization of one large block structured such that all 
p, q, and r values for a given 6 exist within the block, compared with version 2, 
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exhibits a marked time savings in subroutines FRST and THRD.4 As demon- 
strated in Table II, savings in FRST (for moderate N) range from 42-52 %. 
THRD time savings are respectable for large M/N ratios but drop off rapidly 
(as do the savings in FRST) as the number of items created in THRD (FRST) 
diminish with decreasing M(N). Total time savings are expected in going from 
version 2 to version 1 from a comparison of the practical order of the transforma- 
tions with respect to N. A plot of log N vs log t (t being the process time) for 
versions 1 and 2 gave least squares slopes 

Version 1 5.5 & 0.2 
Version 2 6.23 f 0.05 

implying order 5.5 for version 1 and 6.2 for version 2. The departure from ideality 
arises from two factors: 1. Counting through the integral lists index by index. 
2. IO operations. Thus version 2, which must of necessity do more work in FRST 
and THRD in view of its smaller block size and the arbitrary indexing within a 
block, exhibits, as would be expected, a much larger order (with respect to N) 
for the transformation. 

Table III shows a comparison among 

(1) Calculated percent work 
(2) Percent time for version 1 
(3) Percent time for version 2 

for a series of M and N values. The calculated percent work is 

Zi defined in Eq. (I 8). 
Invariably, version 2 values for FRST exceed the calculated percent time while 

version 1 values are too low for FRST and too high for SCND. The result of 
handling the transformed list in two entirely different manners in FRST and THRD 
is very noticeable. The change from four different series of operations to two 
(plus the loss of the position check) accounts for the reduction of percent time 
spent. The reasons for the increase in percent time spent on SCND in version 1 
are the same as above. 

4 In the following test section the version 1 maximum block size of the lists from the first and 
third partial summations was set equal to 8125 [= (255 + 25’9/2] while the block size for the lists 
from the second and fourth partial summations was set at 2000. Version 2 had a set maximum 
block size of 2000. The incoming atomic basis integral list was divided into blocks of 1000 integrals 
each. 
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TABLE III 

Comparison of Actual Percent Time and Calculated Percent Work by Subroutine 

FRST 
SCND 
THRD 
FRTH 

FRST 
SCND 
THRD 
FRTH 

FRST 
SCND 
THRD 
FRTH 

FRST 
SCND 
THRD 
FRTH 

N= 12 M= 12 N = 12 M = 10 N = 16 M = 16 

1” 2b 3” 

35.13 41.63 39.84 
30.31 26.63 21.58 
25.50 24.50 27.66 

9.06 7.24 10.92 

N = 16 M = 14 

36.88 48.47 45.78 
36.47 25.17 21.46 
20.72 22.52 24.40 

5.92 3.84 8.36 

N = 20 M = 20 

32.83 42.00 40.45 
26.30 17.03 21.24 
35.70 37.80 21.64 

5.17 3.17 10.67 

N=20 M=14 

51.16 65.30 55.10 
30.07 18.59 20.67 
15.88 14.38 19.02 
2.89 1.72 5.21 

- 
1 2 3 

40.40 47.34 47.25 
32.09 28.52 21.66 
21.38 19.10 23.32 

6.13 5.04 7.77 

N = 16 M = 12 

42.19 56.00 52.01 
37.10 25.50 21.13 
16.46 15.74 20.72 
4.25 2.76 6.14 

N=20 M=18 

37.73 49.73 44.89 
28.62 18.00 21.32 
29.14 29.52 25.05 

4.51 2.75 8.74 

N=20 M=12 

55.73 70.58 60.82 
29.73 19.09 19.77 
12.41 9.09 15.69 
2.13 1.24 3.72 

- 
1 2 3 

33.37 41.77 40.22 
35.56 24.82 21.37 
24.21 28.69 27.65 

6.86 4.72 10.76 

N = 16 M = 10 

51.55 65.17 58.91 
32.14 20.79 20.25 
13.20 11.98 16.68 
3.11 2.06 4.16 

N=20 M=16 

44.82 57.64 49.78 
29.69 20.18 21.16 
21.84 19.93 22.16 

3.65 2.26 6.90 

N=20 M=lO 

65.75 78.85 66.89 
24.72 14.76 18.39 

8.07 5.55 12.26 
1.46 0.84 2.45 

a Version 1. 
b Version 2. 
O Calculated. 

These methods were compared with a working transformation program (4) to 
establish the validity of the calculational algorithms and to obtain some compara- 
tive times. For N = M = 12 version 2 required 1.00 minutes execution; the 
working routine required 1.86 minutes. All transformed integrals agreed to 1O-Q, 
the effective word length limit. 

CONCLUSION 

An entirely general N5 procedure for the two-electron integral transformation 
has been presented. Also included are the formulae for atomic integral index 
manipulation which are needed for a general partial summation approach to 
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Eq. (2). Actual time tests have demonstrated the order of the work with respect 
to the basis length N. Symmetry savings have been ignored in a deliberate attempt 
to examine the efficiency of straight-forward procedures which will be necessary 
when asymmetrical molecular problems are undertaken. The method requires a 
canonically ordered atomic integral list. A simple reordering of integrals is required 
if they were not generated in this order. The programs written to accomplish the 
transformations need only moderate core storage; massive storage on large 
machines is unnecessary. The effectiveness of block sizes structured to the problem 
has been demonstrated, wherein theoretical and calculated orders of the trans- 
formation approach one another. 

APPENDIX A: DETERMINATION OF THE POSITION OF A MEMBER WITH KNOWN 

INDICES OF A LIST IN EACH OF THE PARTIAL SUMMATIONS 

The sequencing of the list of all integrals (pq I rs) is best viewed as a tabular 
array. First arrange all unique pairs as shown below. 

Position 
Position Pair Position Pair Position Pair 

1 11 N + 1 22 ..* - N2+N NN 

2 12 N+2 23 2 

3 13 : 
2N- 1 2N 

ii 1N 

For each p there are (N - p + 1) q’s; the total number of pq pairs is then 

N-l 
so (N - m) = 7 

since 
N-l N(N - 1) 

2 * 

The number of pq pairs through (p - l)N is 

9-l 

~l(N-q+l)=N(p-l)-(p~l)p+p-l 

= (p - 1) [N + 1 - ;]. 

(A-1) 

64.2) 
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The number of pq pairs since the last change in p is q - p + 1. The pair position 
of pq is thus 

P(Pd = (P - 1) [N + 1 - !J + q - p + 1 (A-3) 

The position of the pair may now be used as a designator of that pair and a similar 
array used to display all combinations of the pairs. 

For each pq pair there exist all rs pairs such that the pair position of the rs pair 
is greater than or equal to P(pq). Everypq pair has then 

N2 + N 
~ - P(P9) + 1 2 

rs’s. The total number of items is then 

‘“z’” [N2 2+ N i + l] = (y)(v + 1)/2. (A.4) 

In order to determine the position of a given integral we need to know the pair 
position of each pair P(pq) and P(m). Then, noting the manner in which the 
pairs combine, the final position determination is completely analogous to the 
determination of the pair position and is 

Position = (P(pq) - 1) [ N(N2+ ‘) + 1 - v] + P(rs) - P(pq) + 1. 
(A.3 

Similar arguments for the partial sums lead to the following expressions for 
the position of a given integral in each list. 

(Sr 1 pq), 1 < r < Nfor everypqa, 1 < [pq] < (N2 + N)/2 for every 6,l < 6 < M 

Position = (6 - 1) . N(N2’ ‘) . N + N . [ (’ - ‘)yN - ‘) + q - l] + r. 

(A4 

(8~ I pq), 1 < [pql < (N2 + W/2 for SY, 1 G [W G W2 + M)P 

Position = (6 - 1) [M + 1 - 41 . N(N2+ ‘) + [(y - S) * N(N2+ “1 

+ [(P- l)[n+ 1 -$]I +4-p+ 1. 64.7) 
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@y I PpBp), 1 < p d N for every &y/3, 6 < /3 < M for every 6y, 
1 < [+I < (M2 + M)/2 

position = 
i[ 

(6 - l)(M2 + A4 - M(S - 1) + 1) + ‘(’ - ‘y - 7, ] N/ 

+ ty - S)(M - 6 + 1) N + @ - 6) N + P. (A.8) 

APPENDIX B: ATOMIC BASIS INTEGRAL LIST MANIPULATIONS NECESSARY TO 
TO ACCOMPLISH THE FIRST PARTIAL SUMMATION 

A list of (pq 1 r8), sequenced as 

1 Q r < Nfor every pqS, 1 < [pq] < (N2 + N)/2 for every 6, 1 < 6 < M, (B.l) 

is to be formed from a list (tu I VW), sequenced as 

[tu] < [VW] < (N2 + N)/2 for every tu, 1 d [tu] d (N2 + N)/2 (B.2) 

by means of the equation 

04 I rs) = C G * (~4 I rs>. (B-3) 
* 

If the output list (B.l) is cut into blocks with the only restriction being a 
complete range over r, the first and last entries in a block will have the indices 
(pbqb 1 l&J and ( paql I N6,) respectively. The integral immediately preceding 
the integral with indices (paqb ] paqb) in the list (B.2) will have the indices (ub I NN) 
(except of course if pa = qb = l), where 

a=p,-1 jf Pb = qb 

a = Pb otherwise 
b=N if Pb = qb 

b=q,-1 otherwise, 

or more simply, [ab] = [p&l - 1. For all pq in the block of the list defined by 
(B.l) lying between [l l] and [p&b] - 1, all integrals necessary for the summation 
(B.3) occur in the input list (B.2) before (pbqb I p&,). Difficulties arise because of 
the restriction of the indices of the list (B.2) in that for all [VW] > 1 the permutation 
of indices (as given in Eq. (3)) is necessary for the completion of (B.3). The integral 
list (B.2) is initially treated as follows: 

P = t, 4 = u, r=v > s=w 
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(with the appropriate interchange of r and s for all r # s). Finishing (B.3) then 
requires the permutation p = Y, 4 = W, r = t, s = u (again with interchange of r 
and s when r # s). At this point the partial summation for all entries in (B.l) 
with [pq] < [pbqb] is completed. In addition, the range of the pq pair during the 
permutation has allowed required contributions to (B.l) to be added for all 
(pq 1 rs) such that [paqb] < [pq] < [NN] with [I I] < [rs] < [paqa]. The summa- 
tions are completed through similar treatment of the list for all pq and rs pairs 
with pair positions greater than or equal to [pbqb]. 

APPENDIX C: FLOW CHART OF THE FOUR PARTIAL SUMMATIONS 
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’ <D I D> = <paa Ipaqa>. See text. 
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